A Chelate-Controlled Route to Disubstituted and Tetrasubstituted γ -Lactones Stereoselectivity in Lewis Acid Promoted Additions to Chiral Methyl β -Formylcarboxylates

Thomas Kunz¹⁾, Agnes Janowitz²⁾, and Hans-Ulrich Reißig*

Institut für Organische Chemie der Technischen Hochschule Darmstadt, Petersenstraße 22, D-6100 Darmstadt

Received May 3, 1989

Key Words: γ-Lactones, di- and tetrasubstituted / Chelates, seven-membered / Allylsilane additions, Lewis acid promoted / Felkin-Anh model / Aldehydes, chiral

On reaction with allyltrimethylsilane/TiCl₄, chiral methyl β -formylcarboxylates 1a-1h provide disubstituted and tetrasubstituted γ -lactones 3a-3h with moderate to excellent diastereoselectivities. Other Lewis acids are less selective. The formation of seven-membered ring chelates $1 \cdot \text{TiCl}_4$ has been proven unambiguously by NMR spectroscopy in several cases. Trichloromethyltitanium displays a selectivity pattern similar to the reagent combination allylsilane/TiCl₄. Aldehydes 1a-1d, 1g, and 1h give primarily trans- γ -lactones, whereas under appropriate conditions 1f affords an excess of cis- γ -lactone 3f. These results are discussed with regard to the Felkin-Anh model and to chelate formation. Model studies with simpler chiral aldehydes 5 and 7 as well as with acetals 9a/b and 11a/b are presented and discussed. They emphasize the importance of chelate control in additions to β formyl esters 1.

4,5-Disubstituted and 3,5-disubstituted γ -lactones occur frequently as structural units in natural products. Simple examples are the pheromone eldanolide³⁾, the quercus (oak, whisky) lactone⁴⁾, or rubrenolide⁵⁾.

Specifically substituted γ -lactones have also been used as templates for stereoselective preparation of complex functionalized acyclic molecules⁶⁻⁸. Many interesting and efficient methods for synthesis of this class of heterocycles have therefore been developed quite recently⁹. In this paper¹⁰ we present our entry to this target, involving the *chelate-con*-

Ein chelatkontrollierter Weg zu di- und tetrasubstituierten γ-Lactonen – Stereoselektivität von Lewis-Säure-induzierten Additionen an chirale β-Formylcarbonsäure-methylester

Die chiralen β -Formylcarbonsäure-methylester 1a-1h liefern mit Allyltrimethylsilan/TiCl4 disubstituierte und tetrasubstituierte y-Lactone 3a-3h mit mäßigen bis exzellenten Diastereoselektivitäten. Andere Lewis-Säuren sind weniger selektiv. Die Bildung von siebengliedrigen Chelaten 1 TiCl₄ wurde in einigen Fällen NMR-spektroskopisch eindeutig nachgewiesen. Trichlormethyltitan zeigt ein ähnliches Selektivitätsmuster wie die Reagentienkombination Allylsilan/TiCl₄. Die Aldehyde 1a-1d, 1g und 1h werden hauptsächlich in trans-y-Lactone umgewandelt, während 1f unter geeigneten Bedingungen im Überschuß das cis-y-Lacton 31 liefert. Diese Ergebnisse werden unter Berücksichtigung des Felkin-Anh-Modells und der Chelatbildung diskutiert. Außerdem werden weitere Modellreaktionen mit den einfacheren chiralen Aldehyden 5 und 7 sowie mit den Acetalen 9a/b und 11a/b vorgestellt. Diese unterstreichen die Bedeutung der Chelatkontrolle bei den Additionen an die β-Formylester 1.

trolled addition of allyltrimethylsilane and trichloromethyltitanium to chiral β -formylcarboxylates 1 as the key step.

Chelate-controlled reactions of nucleophiles¹¹) with carbonyl compounds are usually governed by an α -alkoxy or β -alkoxy group which restricts the conformational freedom of the electrophile by complexation with the metal (Lewis acid). Not much is known concerning γ -functionalized compounds¹²) which should form seven-membered ring chelates. In addition, a second carbonyl group has not often been used as ligand for the metal¹³). Therefore, at the outset of our project the following crucial questions arose:

- Are β -formylcarboxylates 1 able to form seven-membered ring chelates?

- Are these chelates effective (rigid) enough to direct the approach of nucleophiles?

- Can chemoselective reagents be found which attack the formyl group exclusively?

Synthesis of 4,5-Disubstituted y-Lactones

The readily available¹⁴⁾ methyl β -formylcarboxylates 1 react with allyltrimethylsilane in a Sakurai addition¹⁵⁾ to provide γ -hydroxycarboxylates 2. However, no attempt to isolate these intermediates was undertaken. Instead, treatment with acid during workup directly afforded 5-allyl-substituted γ -lactones 3 as mixtures of *trans/cis*-isomers. In general yields are good to excellent (Table 1 and 2).

In order to optimize stereoselectivity we examined aldehyde **1a** ($\mathbf{R} = \mathbf{M}e$) under various reaction conditions and with different Lewis acids. Table 1 demonstrates that only moderate selectivity – up to 2:1 in favour of the *trans*- γ -lactone – can be attained using titanium tetrachloride (entries 4–7). Other Lewis acids induce even lower (entries 8–10) or negligible (entries 1–3) *trans/cis* selectivity.

Table 1. Additions of allyltrimethylsilane to methyl β -formylcarboxylate 1a in the presence of Lewis acids under various conditions

Entry	Lewis Acid	Equivalents	trans-3a:cis- 3a ^{a)}	Yield ^{b)}
1	BF,	1 ^{c)}	52:48	62
2	BF ₃	2°)	51:49	84
3	AlCl ₃	1 ^{c)}	52:48	71
4	TiCl₄	1 ^{c)}	63:37	99
5	TiCl ₄	1 ^{d)}	65:35	79
6	TiCl ₄	1 ^{e)}	69:31	66
7	TiCl ₄	2 ^{d)}	65:35	93
8	$ZrCl_4$	1 ^{d)}	62:38	78
9	HfCl ₄	1 ^{d)}	59:41	80
10	SnCl ₄	1 ^{d)}	56:44	92

^{a)} Product distribution after kugelrohr distillation; in individual cases it has been found that ratios in crude 3 are not significantly different. $^{b)}$ Yield of purified product. $^{c)}$ Complexation with 1a at $-78 \degree C (1 h)$. $^{d)}$ Complexation with 1a at room temperature (1 h). $^{c)}$ Inverse addition: TiCl₄ was added to allyltrimethylsilane and 1a at $-78\degree C$.

The approximate 2:1 ratio for 3a is not significantly different when complexation of aldehyde 1a with TiCl₄ is performed at -78 °C and at room temperature (entries 4 and 5). Also, use of *two equivalents* of the Lewis acid does not change the stereochemical outcome (entries 1/2 and 5/7). An inverse procedure - i.e. premixing of 1a and the silane followed by addition of TiCl₄ - causes a slight increase in the *trans/cis* ratio, but the difference between entries 6 and 4 is within the estimated analytical error of $\pm 3\%$ for ¹H-NMR spectroscopy.

Switching from aldehyde 1a (R = Me) to substrates 1b-1d (R = Et, iPr, Ph) remarkably enhances stereoselectivities (Table 2). Again, BF₃ is a relatively inefficient promotor in additions of allyltrimethylsilane, while TiCl₄ produces *trans*- γ -lactones 3b-3d in moderate (entry 4) to high excess (entries 6 and 9). Hence, an increase in the steric requirements of the substituent R also strengthens the *trans* selectivity.

Table 2. Additions of allyltrimethylsilane to aldehydes 1a-1d in the presence of one equivalent of Lewis acid

Entry	Aldehyde	Lewis Acid	γ-Lactone	trans: cis ^{a)}	Yield ^{b)}
1	1a	BF ₃ ^{c)}	3a	52:48	62
2	1 a	TiCl₄ ^{d)}	3a	63:37	99
3	1 b	$\mathbf{BF}_{3}^{c)}$	3 b	50:50	58
4	1 b	TiCl ₄ ^{d)}	3 b	75:25	85
5	1 c	BF ₃ c)	3c	75:25	45
6	1 c	TiCl ₄ ^{d)}	3c	92:8	69
7	1 d	BF ₃ ^{c)}	3 d	70:30	75
8	1 d	$2 \mathbf{BF}_{3}^{c,e}$	3 d	72:28	65
9	1 d	TiCl₄ ^{d)}	3 d	93:7	63
10	1 d	ZrCl ₄ ^{d)}	3 d	85:15	68

 a^{-d} See footnotes in Table 1. $-e^{-e}$ Two equivalents of BF₃.

As a further example of a highly Lewis acidic nucleophile we examined additions of trichloromethyltitanium¹⁶ to formyl esters **1a**, **1c**, and **1d**. The *trans/cis* ratios determined for γ -lactones **4a**, **4c**, and **4d** are surprisingly close to those obtained in the allylation reaction employing TiCl₄ (Table 2). Geometrically similar intermediates and comparable trajectories of attack of the incoming nucleophilic species seem therefore to be involved in both series.

Interpretation of the 1,2-Asymmetric Induction

The additions of allylsilanes to aldehydes are promoted by coordination of the Lewis acid to the carbonyl group, enhancing the electrophilicity of this moiety. This S_E reaction occurs with a net shift of the double bond, directed by the silyl substituent's β -effect¹⁷. Reactions with chiral substrates can be qualitatively understood by the Felkin-Anh model¹⁸ – a refinement of the original Cram rule¹⁹.

It assumes a reactive conformation with the largest substituent L (or the most electronegative group) antiperiplanar to the carbonyl unit and attack of the nucleophile as shown in A (L = large, M = medium, S = small substituent).

This model satisfactorily explains the 1,2-asymmetric induction of allylsilane additions to 2-phenylpropanal (5) – the standard substrate for testing diastereoselectivities. An approximate 2:1 ratio of syn/anti-isomeric²⁰⁾ homoallylic alcohols 6 has been reported; only a slight dependence on the Lewis acid employed is observed²¹⁾.

For better comparison with chiral aldehydes 1 we also treated 2-methylbutanal (7) with allylsilane. With BF₃ non-selective addition occurs, giving almost equal amounts of *syn*-**8** and *anti*-**8**, while TiCl₄ affords a 62:38 *syn/anti* mixture.

The preference for syn-8 is in accordance with the Felkin-Anh proposal. However, the reason for the higher selectivity with TiCl₄ is not clear. Possibly, complexation of 7 with this larger Lewis acid causes a higher population of conformation **B** than **C**. For the less voluminous BF₃ this difference might be negligible, since the methyl and ethyl substituents are quite similar.

Another explanation considers different trajectories of the nucleophile. With larger Lewis acids the nucleophile is forced to be closer to the chiral center, thus enhancing the influence of this moiety on the stereochemical outcome (see A'). Experiments with α -chiral thionium ions have recently been explained using this hypothesis²². According to this model, changing from BF₃ to TiCl₄ should result in higher selectivities for 5; however, this is not the case. This is why we prefer the first proposal at this moment.

The Felkin-Anh model can also be applied to interpret BF_3 -induced allylsilane additions to aldehydes 1a - 1d. This Lewis acid coordinates at *one* nucleophilic center only. The reactive species will therefore be the monocomplex of the

aldehyde, and the potential second ligand can be treated as an "innocent" substituent exerting mainly steric effects.

Since both 1a and 1b give completely nonselective reactions (Table 2, entries 1 and 3), the methyl, ethyl, and (methoxycarbonyl)methyl groups seem to display rather similar steric requirements in the transition states of the allylation process. These findings are in agreement with those for the BF₃-promoted reactions of 2-methylbutanal (7). Including the experiments with 1c and 1d (Table 2, entries 5 and 7) the following reasonable sequence for the substituents' size²³⁾ can be established:

$$H < Me \approx Et \approx CH_2CO_2Me < iPr \approx Ph$$

Interestingly, rather similar selectivities were obtained for allylations of **1a**, **1c**, and **1d** under conditions involving nucleophilic allyl *radicals* at a metal surface²⁴⁾. We propose that these ratios reflect the *inherent selectivity* of chiral aldehydes **1** in reactions with nucleophilic species.

The other Lewis acids used in this study are able to coordinate to two additional ligands, thereby forming octahedral complexes. These seven-membered chelates are formed with β -formylcarboxylates 1 and TiCl₄, as unequivocally demonstrated by spectroscopic means (see below). This species, involving *one* equivalent of Lewis acid, should be the reactive intermediate, as suggested by the observation that addition of a second equivalent of TiCl₄ has no influence on the stereoselectivity. Therefore, contrary to the BF₃induced allylsilane additions, only a few conformations have to be examined for $1 \cdot TiCl_4$.

Inspection of molecular models (taking into account the X-ray analysis of a related seven-membered chelate with TiCl₄ reported by Helmchen et al.^{13c)}) suggests that conformers **D** and **E** have to be considered in the formation of *trans*- γ -lactones. In both (idealized) staggered arrangements, the **R** group avoids *gauche* interactions with the CH₂-CO₂Me bond. Preliminary molecular mechanics calculations support this view. Structures **D** and **E** are similar to the reactive conformation used within the frame of the Felkin-Anh model. The nucleophile's attack should be sterically more favourable in **D**, though stereoelectronic effects might increase the reactivity of **E**²⁵⁾.

For compounds with large-sized R only conformation D seems to be important, as is demonstrated by the high *trans* selectivities (Table 2 entries 6 and 9). On the other hand, for

	1a	la · ⁻	ΓiCl₄ Δδ	1 a ·	BF ₃ Δδ	1 d	1 d · 1	ΓiCl₄ Δδ	1 d	BF ₃ Δδ
¹ H NMR CHO CO_2Me ¹³ C NMR	9.70 3.69	9.82 4.14	0.12 0.45	9.66 3.69	- 0.04 0.00	9.66 3.62	9.86 4.10	0.20 0.48	9.65 3.63	-0.01 0.01
C-1 C-4 OMe	172.1 202.6 51.5	180.9 215.0 58.4	8.8 12.4 6.9	173.3 205.5 52.6	1.2 2.9 1.1	172.2 199.2 55.0	180.9 211.3 58.4	8.5 12.1 3.4	173.1 200.0 54.9	$0.7 \\ 0.8 \\ -0.1$

Table 3. Selected ¹H NMR and ¹³C NMR values for complexes of 1a and 1d with TiCl₄ and BF₃, respectively (δ, CD₂Cl₂)^{a)}

^{a)} For the full data set see ref.¹⁾; for complexes with **1a** also see ref.¹⁰⁾.

small substituents R, like Me or Et, the modest trans/cis ratios observed (Table 2) suggest that other conformers have to be considered. However, the inherent selectivity of the aldehydes 1a - d – as discussed above – is significantly surpassed when chelate formation occurs. This enhancement is not just caused by the interchange of the Lewis acids, since the simpler chiral aldehydes 5 and 7, which are not capable of forming chelates, show a different pattern. For the reaction of 7 and allylsilane promoted by TiCl₄, the syn isomer of 8 predominates, while 1a - sterically rather similar to 7 - gives mainly trans-3a, corresponding to a primary anti adduct 2²⁶⁾. Also, reaction of 5 gives a 2:1 syn/ anti ratio of 6; the aldehyde 1d advances selectivity up to 93:7 in favour of trans-3d! These results unequivocally demonstrate the importance of chelate control in these 1,2-asymmetric inductions. Other bidentate Lewis acids are less effective than TiCl₄ as shown in Table 1 and 2. This might be due to longer oxygen metal bonds (increased covalent radii of the central metal²⁷) affording less rigid seven-membered chelates and thus lower selectivity.

Trichloromethyltitanium as a nucleophile displays the same selectivity pattern with 1a-1d as allylsilane/TiCl₄. Chelate formation with 1 is therefore very likely with one molecule of MeTiCl₃ functioning as Lewis acid²⁸, while a second one attacks the activated species, following a trajectory similar to that of the allyl reagent.

Spectroscopic Proof of Chelate Formation

Addition of TiCl₄ to aldehydes 1 at $-78 \,^{\circ}$ C generates yellow precipitates which dissolve on warming to room temperature, giving an orange-yellow solution of 1 · TiCl₄. The IR spectrum of 1a · TiCl₄ (in CDCl₃) shows a carbonyl absorption at 1660 cm⁻¹, that of 1a appearing at 1730 cm⁻¹. This important weakening of the bond order for *both* C=O bonds suggests chelate formation. Even more convincing arguments arise from NMR spectroscopy, which has successfully been used by others²⁹ to clarify chelate structures.

Since solutions of $1 \cdot \text{TiCl}_4$ (in CD_2Cl_2) do not give wellresolved NMR spectra at low temperature, these have to be recorded at 25 °C. The most significant ¹H and ¹³C NMR values for 1a and 1d as well as for their TiCl₄ and BF₃ complexes are compiled in Table 3. These data unambiguously demonstrate that both carbonyl groups of 1 are involved in complexes with TiCl₄. Downfield shifts of approximately 8.5 ppm for C-1 (CO₂Me) and 12 ppm for C-4 (CHO) are observed for $1a \cdot \text{TiCl}_4$ and $1d \cdot \text{TiCl}_4$, respectively. The ¹H NMR data are less impressive and, interestingly, display the largest effect for the methoxy signals. BF₃ shifts both C=O signals of 1a or 1d to lower field. However, the differences from uncomplexed aldehydes are only in the order of 1-3 ppm. The proton signals are essentially unchanged. These findings are in agreement with other recent reports²⁹, suggesting a weaker interaction of BF₃ with carbonyl groups.

Synthesis of 3,5-Disubstituted and 3,4,4,5-Tetrasubstituted γ -Lactones

 α -Chiral β -formyl esters $\mathbf{1e} - \mathbf{1h}^{14}$ have been subjected to the Sakurai reaction to examine 1,3-asymmetric induction. As expected, the stereoselectivity observed for $\mathbf{1e}$ and $\mathbf{1f}$ is significantly lower than that for aldehydes $\mathbf{1a} - \mathbf{1d}$. Thus,

Table 4. Additions of allyltrimethylsilane to aldehydes 1e-1h in the presence of Lewis acids

Entry	Aldehyde	Lewis Acid ^{a)}	y-Lactone	trans: cis	Yield ^{b)}
1	1 e	BF3	3e	50:50	74
2	1 e	TiCl₄	3e	50:50	67
3	1 f	BF ₃	3f	48:52	73
4	1f	TiCl₄	3f	24:76	64
5	1 g	BF3	3g	50:50	· 60
6	1 g	TiCl₄	3g	90:10	61
7	1ĥ	TiCl₄	3ĥ	88:12	70

^{a)} Complexation with one equivalent at -78 °C. - ^{b)} See footnote in Table 1.

the methyl-substituted substrate 1e gives equal amounts of *trans*- and *cis*- γ -lactones 3e regardless of whether BF₃ or TiCl₄ is used as a promoting Lewis acid (Table 4).

Also, with 1f, where a sterically more demanding phenyl group is present, BF₃ brings about an essentially unselective transformation into 3f. In contrast, TiCl₄ induces a moderate preference for *cis*-3f (entry 4). Equilibration experiments³⁰⁾ reveal that the *trans/cis* ratio of approximately 1:3 is not the result of thermodynamic control.

On the other hand, α -chiral β -dialkyl-substituted compounds like 1g and 1h provide the corresponding tetrasubstituted γ -lactones 3g and 3h, respectively, with a surprisingly high excess (9:1) of the *trans* isomers when TiCl₄ is employed (entries 6 and 7). BF₃ again yields a completely stereorandom result with aldehyde 1g (entry 5). The striking difference in the sense of 1,3-asymmetric induction depending on the degree of substitution at the β -carbon was also observed in cuprate additions to $1e - 1f^{2.31}$.

Interpretation of the 1,3-Asymmetric Induction

The results collected in Table 4 demonstrate that the inherent selectivity of aldehydes 1e - 1h is negligible. The BF₃induced additions are not influenced by the stereogenic center β to the carbonyl group attacked (entries 1, 3, and 5).

Chelate formation using TiCl₄ as promotor does not raise the stereoselectivity for monosubstituted aldehydes unless the group R is relatively large, e.g. a phenyl group (entries 2 and 4)³²⁾. In this case we propose a reactive conformer F which should lead to the favoured *cis*-**3f**.

For β -dialkyl-substituted β -formyl esters 1g and 1h – both providing *trans*-lactones with preference – a different major conformation must be assumed. We speculate that the two additional alkyl groups force a change from F to conformation G, thereby minimizing repulsive interactions of these substituents with the formyl group. The methyl group might prefer the pseudoequatorial position, as illustrated in G'. Thus, the substituents at the stereogenic center in 1f-1h do not directly steer the addition of the nucleophile. Instead, a conformational change must govern this process. The role of large sized chlorine atoms at titanium should also be considered in all these discussions^{13c}). Their effect is hard to take into account using molecular models. Consolidation of these speculations by force-field calculations seems to be appropriate.

1,2-Asymmetric Induction with Chiral Acetals

Having established the effectiveness of chelate-controlled allylsilane additions to chiral β -formyl esters 1, we wanted to compare these results with those employing the corresponding chiral acetals **9a** and **9b**¹⁴⁾ as electrophiles.

Using TiCl₄ as the promoting Lewis acid with 9a, a syn/ anti ratio of 60:40 was determined for the isolated homoallylic ether 10a. Similarly, the phenylsubstituted acetal **9b** gives a 40:60 mixture, though in this case the configurational assignment is uncertain (see below). As expected these transformations, involving highly reactive oxocarbenium ions³³⁾, are much less selective than those of the related aldehydes 1 a and 1 d. Both major products can be explained by applying the Felkin-Anh model to the intermediate. On the other hand, for the lower homologue of 9 – the corresponding α -formyl ester – a 40:60 syn/anti ratio has been reported, and was interpreted as a consequence of chelatecontrolled addition of allylsilane³⁴). We do not believe that a chelate accounts for these as well as our own results, since the oxocarbenium ion generated cannot act as a ligand to the Lewis acid³⁵⁾.

Reactions of allylsilane/TiCl₄ with acetals 11 a and 11 b – bearing protected γ -hydroxy functions – also give addition products 12a and 12b with low to zero stereoselectivity. These experiments emphasize that the ester group in 9a is essentially an "inert" substituent, exerting no special effect. In summary, one has to state that the inherent selectivities in these acyclic chiral acetals are quite low.

Configurational Assignments

The determination of the relative configurations in 4,5-disubstituted γ -lactones $3\mathbf{a} - \mathbf{d}$ and $4\mathbf{a} - \mathbf{d}$ is straightforward and in accord with comprehensive precedents³⁶. The most significant evidence is obtained from ¹H NMR spectroscopy, by comparing the chemical shifts of 5-H in the two isomers. Without exception this signal appears at lower field in the *cis*-isomer ($\delta = 4.5 - 4.9$) than in the corresponding *trans*- γ -lactone ($\delta = 4.1 - 4.5$). On the other hand, the signal for the 4-methyl group is shifted slightly upfield in *cis* compounds (*cis*- $3\mathbf{a}$: $\delta = 1.05$; *trans*- $3\mathbf{a}$: $\delta = 1.14$).

OSiMe.

15

(syn/anti = 56 : 44)

Coupling constants are often not conclusive for five-membered heterocycles. This is also true for substituted γ -lactones, as pointed out by Font et al.³⁷, who performed force-field calculations and correlated the conformations obtained to observed experimental coupling constants. This is why we did not base our stereochemical assignments on these values even if they were determinable. For **3a** an NOE experiment confirmed the proximity of 5-H to 4-Me in the *trans* compound, while the *cis*-lactone did not display this effect.

¹³C NMR data fully corroborate our assignments. The signal of $4\text{-CH}_{(2/3)}$ is consistently shifted to lower field (3-4 ppm) in *trans*lactones. Also, in general *all signals* for ring carbons appear at lower field in *trans*-3/4, a single exception being recorded for C-4 of 3c.

The stereochemistry of 3,5-disubstituted γ -lactones 3e and 3f can be determined by consideration of the coupling constants. For cis compounds the conformation having both substituents in pseudoequatorial position should clearly be favoured ³⁷⁾. Actually, large coupling constants for 3-H and 5-H to one of the protons at C-4 are observed for cis-3f (12 Hz, 10 Hz), whereas trans-3f displays only small values (5-6 Hz). The chemical shifts for 5-H are at higher field in cis-3e and cis-3f than the corresponding signals in the trans-lactones. In cis-lactones of this pattern the steric compression is smaller than in trans compounds – an effect also indicated by lower chemical shifts for C-3 in the ¹³C NMR spectra. shifts for the two 4-methyl groups in *trans*-**3g** are very similar ($\delta = 1.08, 1.02$) compared to those in *cis*-**3g** ($\delta = 1.18, 0.83$). This effect is in agreement with a predominating conformation of *cis*-**3g** having both substituents at C-3 and C-5 in pseudoequatorial positions, as depicted above. For the major *trans* isomer an NOE effect between 5-H and 3-Me as well as to one of the 4-Me groups demonstrates proximity of these substituents. The analogous stereochemical assignment for **3h** has been made by comparison of proton and carbon signals with those of **3g**.

For acyclic addition products 8, 10, and 12 the stereochemical assignments are not straightforward. Although *syn* arrangement of substituents in the major isomer of 8 is likely on mechanistic grounds and has been proposed for the related additions of allyl boron reagents to 7^{38} , a stereochemical correlation with 3a was desirable. We converted a *trans/cis* mixture of 3a into the silylated 1,4-diols 13 which were compared with the related compounds 14 and 15. In 13 the major isomer must have *anti* configuration because of the predominance of *trans*-3a in the starting material. Comparison of *O*-silylated compounds was preferred, as it excludes hydrogen bridging effects on the NMR values observed.

1) LIAIH,

This ¹³C NMR criterium can also be applied to the two tetrasubstituted γ -lactones **3g** and **3h**, where there are no proton couplings to allow stereochemical assignments. ¹H NMR signals for 5-H again appear at lower field for *trans* compounds. The chemical

75 X

Table 5. Comparison of significant ¹³C NMR and ¹H NMR values of 3-methyl substituted 1,4-dioxy compounds 13, 14, 12a, and 12b, methyl 4-methoxy-6-heptenoates 10a and 10b, as well as of homoallylic alcohol derivatives 8 and 15 (δ, C₆D₆^a)

8

(<u>syn/anti</u> = 62 : 38)

Signal ^{b)}	Compound	13	14	15	8 ^{a)}	12a	12b	10 a ^{a)}	10 b
3-Me	syn	15.5	14.9	14.1	13.4	14.5	14.4	14.3	135.5°)
	anti	16.1	15.9	15.4	14.6	15.4	15.4	16.9	142.3°)
C-4	syn	76.7	85.1	76.4	73.6	84.5	84.6	83.4	83.8
	anti	77.2	85.7	76.9	74.2	85.1	85.2	84.1	84.0
C-3	syn	35.2	32.8	40.6	39.5	32.8	32.2	32.5	45.1
	anti	35.7	32.8	41.0	40.6	32.8	32.2	33.2	46.3
4-H ^{d)}	syn anti	3.7 (m) 3.47	3.08 (3.7/6.2/6.2) 3.01 (5.0/5.0/6.7)	3.73 (3.5/4.5/7.0) 3.67 (4.8/4.8/6.8)	3.55 (4.2/4.2/8.5) 3.47 (3.2/5.7/9.0)	2.98 (3.5/6.5/6.5) 2.91 (5.0/5.0/6.6)	3.11 (3.8/6.3/6.3) 3.06 (5.0/5.0/6.8)	3.13 (3.5/5.8/ 3.02 (5.0/6.2/	/7.1) /6.2)
ratio	syn/anti	39:61	60:40	56:44	62:38	60:40	50:50	60:40	40:60

^{a)} Spectra of 8 and 10a were recorded in CDCl₃ as solvent. $-^{b)}$ To facilitate comparison the same numbering of atoms is applied for all compounds in this table. $-^{c)}$ Signal for the *ipso*-carbon of the phenyl group. $-^{d)}$ In parentheses: values of the coupling constants in Hz.

The 13 C NMR and 1 H NMR data compiled in Table 5 display relatively small but consistent differences between *syn-* and *anti*isomeric compounds. Our stereochemical assignments for 14, 12a, and 10a are based on this comparison with 13. This survey of data also proves that the *syn* isomer of 8 (and 15) corresponds to the major product as anticipated on mechanistic grounds and literature evidence. The assignment of 10b is uncertain, but we suggest the *anti* stereochemistry for the predominant isomer to be more likely, considering both the NMR data and the proposal of the Felkin-Anh model.

Conclusion

In this paper we have demonstrated that disubstituted and tetrasubstituted γ -lactones **3** and **4** can be prepared with a moderate to high excess of one diastereomer. Chelate formation involving two carbonyl groups is the key feature in attaining stereoselectivity. Since several of the aldehydes **1** can be obtained in optically active form³⁹ this route also opens the possibility of synthesizing enantiomerically pure or enriched γ -lactones⁴⁰. Other Lewis acidic nucleophiles currently investigated display similar behaviour in additions to these chiral aldehydes and even surpass the stereoselectivity achieved for allylsilane/TiCl₄ or MeTiCl₃⁴¹.

We are very grateful to the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the Vereinigung von Freunden der Technischen Hochschule zu Darmstadt, and the Karl-Winnacker-Stiftung (Hoechst AG, Frankfurt). We also thank Brigitte Suchland, Andreas Schmitt, and Matthias Rümmler for experimental help.

Experimental

IR spectra were recorded with a Perkin-Elmer 1420 Ratio Recording, a Beckman Acculab 4, or a Beckman IR 5a. - ¹H NMR spectra: Bruker WM 300 (internal reference TMS or CHCl₃). - ¹³C NMR spectra: Bruker WM 300 (internal reference CDCl₃). - Boiling points of compounds obtained in small-scale experiments refer to the temperature in a Büchi Kugelrohr oven. - Radial chromatography was performed with a "Chromatotron" (Harrison Research, Model 7924) using silica gel plates.

Starting materials: 1a-1f, 1h, 9a, 9b, 11a, and 11b see ref.^[4]; 1g see ref.^[4]; allyltrimethylsilane (Fluka, Chemika) was used as obtained; TiCl₄ and Et₂O – BF₃ were distilled under nitrogen. Et₂O – BF₃ was used as source for BF₃ in all experiments employing this Lewis acid; dichloromethane was distilled from CaH₂ and stored over molecular sieves. All reactions were executed in a flame-dried flask under a slight pressure of dry nitrogen. Solvents and liquid reagents were added by syringe. All chiral products were obtained as racemates.

Syntheses of γ -Lactones

General Procedure for Additions of Allyltrimethylsilane to Aldehydes 1: To a solution of aldehyde 1 (1.0 equivalent) in dichloromethane (2 ml/1 mmol of 1) the Lewis acid (1.0–2.0 equivalents, see Table 6) was added. The mixture was stirred for 1 h at -78° C (method A) or for 1 h at room temp. (method B). Allyltrimethylsilane (1.5 equivalents) was added at -78° C. The mixture was stirred for 2 h at -78° C, followed by warm-up to room temp. over a 16h period, and addition of sulfuric acid (50%, 1 ml/1 mmol of 1). Dilution with water and extractive workup with dichloromethane provided the crude lactones 3, which were distilled in a kugelrohr apparatus. Yields refer to reactions performed on 2 to 10-mmol scale. The γ -lactones obtained showed a purity of 90-97% by ¹H NMR. Major signals of impurities in the ¹H NMR spectra: $\delta = 3.8-3.4$ (s, CO₂Me of **2** and elimination products derived thereof). Samples for elemental analysis were gained by radial chromatography [SiO₂, elution with pentane:ethyl acetate (10:1)].

Table 6. Lewis acid promoted additions of allyltrimethylsilane to aldehyde **1a** (2.00 mmol) according to the general procedure

Lewis Acid	Equi- valents	Method	Yield ([g]	of 3a (%)	trans: cis
BF ₁	1	Α	0.173	62	52:48
BF	2	Α	0.235	84	51:49
AlCl ₃	1	A ^{a)}	0.199	71	52:48
TiCl	1	Α	0.279	99	63:37
TiCl	1	В	0.220	79	65:35
TiCl₄	1	A ^{b)}	0.186	66	69:31
TiCl	2	В	0.260	93	65:35
ZrCL	1	B ^{a)}	0.218	78	62:38
HfCl	1	B ^{a)}	0.225	80	59:41
SnCl ₄	1	В	0.257	92	56:44

^{a)} Solid Lewis acids were transferred into the reaction flask under a stream of dry nitrogen before adding 1a and the solvent. – ^{b)} Inverse procedure: TiCl₄ was added to a mixture of 1a and allylsilane.

Table 7. Lewis acid promoted additions of allyltrimethylsilane to aldehydes 1b-1h according to the general procedure

Aldehyde (mmol)	Lewis acid ^{a)}	Method	Yield of [g]	3b-h (%)	trans: cis
1 b (2.00)	BF ₃	Α	0.178	58	50:50
1 b (2.00)	TiCl₄	В	0.261	85	75:25
1 c (1.90)	BF3	Α	0.144	45	75:25
1 c (2.00)	TiCl₄	В	0.231	69	92:8
1d (2.00)	BF_3	Α	0.305	75	70:30
1 d (2.00)	$\mathbf{BF}_{3}^{(b)}$	Α	0.262	65	72:28
1 d (2.00)	TiCl ₄	В	0.253	63	93:7
1 d (2.00)	ZrCl₄	В	0.275	68	85:15
1e (3.10)	BF ₃	Α	0.321	74	50:50
le (3.65)	TiCl₄	Α	0.341	67	50:50
1f (3.64)	BF ₃	Α	0.584	73	48:52
1f (3.95)	TiCl₄	Α	0.512	64	24:76
1g (5.19)	BF ₃	Α	0.521	60	50:50
1 g (4.11)	TiCl₄	Α	0.419	61	90:10
1 h (3.95)	TiCl₄	A	0.574	70	88:12

^{a)} One equivalent of Lewis acid employed. $-^{b)}$ Two equivalents of BF₃ were used in this reaction.

For physical and spectroscopic data of γ -lactones **3a**, **3c**, and **3d** see ref.²⁴. For ¹³C NMR data and elemental analyses see Tables 8 and 9.

5-Allyl-4-ethyl-4,5-dihydro-2(3H)-furanone (**3b**): Colorless liquid, b. p. 70 °C/0.01 Torr. – IR (film): $\tilde{v} = 3080, 2960, 2930, 2880 \text{ cm}^{-1}$ (C–H), 1775 (C=O), 1640 (C=C). – ¹H NMR (CDCl₃): $\delta = 5.82$ (m_c, 1H, =CH), 5.24–5.10 (m, 2H, =CH₂), 4.56 (dt, J = 8.5, 6.5 Hz, 0.25H, cis-5-H), 4.19 (td, J = 6.5, 5.2 Hz, 0.75H, trans-5-H), 2.74–2.08 (m, 4H, 5-CH₂, 3-H), 1.58, 1.36 (2 m_c, 2H, 4-CH₂), 0.94 (t, J = 7 Hz, 3H, CH₃).

5-Allyl-4,5-dihydro-3-methyl-2(3H)-furanone (3e): Colorless liquid, b.p. 100° C/0.8 Torr. – IR (film): $\tilde{v} = 3080 - 3000$,

		C-2 (s)	C-3	C-4	C-5 (d)	4-R or 3-R	5-R
3b	trans cis	176.3 176.5	$\frac{38.5 (t)^{a}}{34.3 (t)^{a}}$	41.5 (d) 40.3 (d)	84.5 82.4	25.9 (t), 11.7 (q) 21.1 (t), 11.9 (q)	$34.6 (t)^{a}$, 132.4 (d), 118.6 (t) 33.9 (t) ^a , 133.1 (d), 118.1 (t)
3e	trans ^{b)} cis ^{b)}	179.5 180.0	33.9 (d) 36.0 (d)	$36.6 (t)^{a}$ 38.6 (t) ^a	77.3 77.6	15.1 (q) 15.4 (q)	34.5 (t) ^{a)} , 132.2 (d), 119.0 (t) 35.8 (t) ^{a)} , 134.5 (d), 118.7 (t)
3f	trans cis	177.0 176.6	45.5 (d) 47.0 (d)	$\begin{array}{c} 39.4 \ (t)^{a)} \\ 37.3 \ (t)^{a)} \end{array}$	77.8 77.5	137.2 (s), 128.8 (d) ^{e)} 136.6 (s), 129.0, 128.1, 127.6 (3 d)	$39.2 (t)^{a}$, 132.0 (d), 119.0 (t) 35.5 (t) ^a , 131.9 (d), 119.2 (t)
3g	trans cis	178.0 — ^{c)}	44.6 (d) 47.0 (d)	40.9 (s) 39.0 (s)	86.5 87.7	22.0, 21.9, 9.2 (3 q) 23.2, 15.3, 7.7 (3 q)	34.2 (t), 133.5 (d), 117.7 (t) 33.0 (t), 133.7 (d), 117.5 (t)
3h	trans cis	179.0 179.3	42.8 (d) 45.1 (d)	44.0 (s)	83.9 87.8	29.9, 28.8, 25.2, 22.6, 22.4 (5 t), 9.0 (q) 36.0 ^a , 26.5, 25.1, 22.5, 22.4 (5 t), 12.4 (q)	33.6 (t), 133.8 (d), 117.5 (t) 37.2 (t) ^{a)} , 134.1 (d), 117.2 (t)
4a	trans cis	176.2 176.6	37.1 (t) 36.6 (t)	38.0 (d) 33.1 (d)	83.3 79.5	16.5 (q) ^{a)} 13.6 (q) ^{a)}	18.8 $(q)^{a}$ 15.1 $(q)^{a}$
4c	trans	176.4	32.5 (t)	49.0 (d)	80.1	30.4 (d), 21.3, 20.7 (2 q) ^{a)}	$19.1 (q)^{a}$
4d	cis	175.4	37.4 (t)	49.5 (d)	83.0	138.2 (s), 129.0, 127.7, 127.2 (3 d)	19.1 (q)

Table 8. ¹³C NMR data of γ -lactones 3b, 3e-h, and 4a-4d (δ , CDCl₃)

^{a)} Signals marked are interchangable within the line. $-^{b)}$ Due to the 1:1 ratio of diastereomers the assignments of *trans*-3e and *cis*-3e are uncertain. $-^{c)}$ Because of the low content of this isomer the signal does not appear.

2990 – 2880 cm⁻¹ (C–H), 1765 (C=O), 1640 (C=C). – ¹H NMR (CDCl₃): δ = 5.86 – 5.71 (m, 1 H, =CH), 5.20 – 5.13 (m, 2 H, =CH₂), 4.58 (dtd, J = 5, 6.5, 7.5 Hz, 0.5 H, trans-5-H), 4.41 (tdd, J = 6, 11, 12 Hz, 0.5 H, cis-5-H), 2.74 – 2.61 (m, 1 H, 3-H), 2.56 – 2.31 (m, 2.5 H, 5-CH₂, cis-4-H), 2.19 (ddd, J = 4.5, 7.5, 13 Hz, 0.5 H, trans-4-H), 1.99 (td, J = 7.5, 13 Hz, 0.5 H, trans-4-H), 1.59 (ddd, J = 11, 12, 13 Hz, 0.5 H, cis-4-H), 1.28 (d, J = 7 Hz, 1.5 H, Me), 1.26 (d, J = 7 Hz, 1.5 H, Me).

5-Allyl-4,5-dihydro-3-phenyl-2(3H)-furanone (**3f**): B.p. $140^{\circ}C/$ 0.01 Torr. – IR (film): $\tilde{v} = 3100 - 3010, 2980 - 2900 \text{ cm}^{-1} (C-H),$ 1760 (C=O). – ¹H NMR (CDCl₃): $\delta = 7.38 - 7.20$ (m, 5H, Ph), 5.90 - 5.74 (m, 1H, =CH), 5.22 - 5.12 (m, 2H, =CH₂), 4.69 (quint, J = 6 Hz, 0.24 H, trans-5-H), 4.54 (dtd, J = 5.5, 6, 12 Hz, 0.76 H, cis-5-H), 3.88 (dd, J = 6, 9 Hz, 0.24 H, trans-3-H), 3.86 (dd, J = 9,10 Hz, 0.76 H, cis-3-H), 2.72 (ddd, J = 5.5, 9, 13 Hz, 0.76 H, cis-4-H), 2.64 - 2.38 (m, 2.5 H, 5-CH₂, trans-4-H), 2.08 (ddd, J = 10, 12,13 Hz, 0.76 H, cis-4-H).

5-Allyl-4,5-dihydro-3,4,4-trimethyl-2(3H)-furanone (3g): Colorless liquid, b.p. 70° C/0.01 Torr. – IR (film): = 3080,

Table 9. Elemental analyses obtained for new compounds

			Ca	Calcd.		und
			С	Н	С	Н
3b	$C_9H_{14}O_2$	(154.2)	70.10	9.15	69.96	9.25
3e	$C_8H_{12}O_2$	(140.2)	68.55	8.62	68.19	8.70
3f	$C_{13}H_{14}O_2$	(202.3)	77.20	6.98	76.92	7.03
3 g	$C_{10}H_{16}O_2$	(168.2)	71.39	9.59	71.17	9.85
3 h	$C_{13}H_{20}O_2$	(208.3)	74.96	9.68	74.97	9.73
4c	$C_8H_{14}O_2$	(142.2)	67.57	9.92	67.15	10.10
4d	$C_{11}H_{12}O_2$	(176.2)	74.98	6.86	74.34	6.88
8	$C_8H_{16}O$	(128.2)	74.94	12.85	74.51	12.49
10 a	$C_{10}H_{18}O_3$	(186.3)	64.49	9.74	64.37	9.90
10b	$C_{15}H_{20}O_{3}$	(248.3)	72.55	8.12	72.29	8.24
12 a	$C_{16}H_{24}O_2$	(248.4)	77.38	9.74	77.03	9.88
12 b	$C_{15}H_{32}O_2Si$	(272.5)	66.11	11.84	65.56	12.02
14	$C_{12}H_{26}O_2Si$	(230.4)	62.55	11.37	62.74	11.41
15	C ₁₁ H ₂₄ OSi	(200.4)	65.93	12.07	66.50	12.19

2980 – 2880 cm⁻¹ (C–H), 1770 (C=O), 1640 (C=C). – ¹H NMR (CDCl₃): $\delta = 5.87$ (tdd, J = 7, 10, 17 Hz, 1 H, =CH), 5.22–5.12 (m, 2H, =CH₂), 4.12 (dd, J = 6, 8 Hz, 0.9H, *trans*-5-H), 4.02 (dd, J = 4.5, 9 Hz, 0.1 H, *cis*-5-H), 2.88–2.42 (m, 3 H, 3-H, 5-CH₂), 1.12 (d, J = 8 Hz, 3 H, 3-Me), 1.08, 1.02 (2 s, 5.4 H, *trans*-4-Me), 1.18, 0.83 (2 s, 0.3 H each, *cis*-4-Me).

1-Allyl-4-methyl-3-oxo-2-oxaspiro[4.5]decane (**3h**): B. p. $120 \,^{\circ}C/$ 0.01 Torr. – IR (film): $\tilde{v} = 3080, 2980 - 2860 \,^{-1}(C-H), 1760$ (C=O), 1640 (C=C). – ¹H NMR (CDCl₃): $\delta = 5.90$ (tdd, J = 6.5, 10, 17 Hz, 1H, =CH), 5.20–5.12 (m, 2H, =CH₂), 4.29 (dd, J =4.5, 9 Hz, 0.88 H, trans-1-H), 4.08 (dd, $J = 3, 11 \,$ Hz, 0.12 H, cis-1-H), 2.50 (q, $J = 7 \,$ Hz, 1H, 4-H), 2.44–2.24 (m, 2H, 1-CH₂), 1.66–1.14 (m, 10 H, CH₂), 1.14 (d, $J = 7 \,$ Hz, 3H, 4-Me).

Reactions of Aldehydes 1 with Trichloromethyltitanium: According to ref.¹⁶⁾ 1.14 g (6.00 mmol) of TiCl₄ was added to 20 ml of dry diethyl ether at -50 °C. This intense yellow solution was treated with 3.66 ml of 1.64 M methyl lithium (in hexane) for 1 h at -50 °C. Addition of 1 (2.00 mmol), warm-up to -20 °C within 1 h, and further stirring for 3 h at -10 °C were followed by treatment with 5 ml of water. After 24 h the mixture was worked up by extraction with diethyl ether. The crude product **4** was distilled in a kugelrohr apparatus and analyzed (purity 90–95%).

4,5-Dihydro-4,5-dimethyl-2(3H)-furanone (4a): 0.260 g (2.00 mmol) of 1a gave 0.135 g (59%) of 4a (trans: cis = 68:32). – B. p. 60°C/3 Torr (ref.⁴³⁾ 100°C/15 Torr). – ¹H NMR (CDCl₃): $\delta = 4.68$ (quint, J = 6.5 Hz, 0.32H, cis-5-H), 4.15 (dq, J = 7.5, 6.1 Hz, 0.68H, trans-5-H), 2.75–2.55, 2.30–2.05 (2 m, 3 H, 3-H, 4-H), 1.40, 1.14 (2 d, J = 6.1 Hz, J = 6.3 Hz, 2.05H each, trans-5-Me and trans-4-Me), 1.29, 1.03 (2 d, J = 6.5 Hz, J = 6.8 Hz, 0.95H each, cis-5-Me and cis-4-Me).

4,5-Dihydro-4-isopropyl-5-methyl-2(3H)-furanone (4c): 0.316 g (2.00 mmol) of 1c provided 0.211 g (74%) of 4c (trans: cis = 92:8). - B. p. 65 °C/0.5 Torr. - IR (film): $\tilde{v} = 2950-2870$ cm⁻¹ (C-H), 1775 (C=O). - ¹H NMR (CDCl₃): $\delta = 4.72$ (m_c, 0.08 H, cis-5-H), 4.38 (quint, J = 6.2 Hz, 0.92 H, trans-5-H), AB part of an ABX system ($\delta_A = 2.63$, $\delta_B = 2.32$, $J_{AB} = 18$ Hz, $J_{AX} = 9.1$ Hz, $J_{BX} = 8.6$ Hz, 1.84 H, trans-3-H), 1.94 (m_c, 1.2 H, cis-3-H, 4-H), 1.72, 0.95, 0.92 (oct, 2 d, J = 6.7 Hz, 7H, 4-iPr), 1.41, 1.27 (2 d, J = 6.2 Hz, J = 7.0 Hz, 0.92H and 0.08H, trans-5-Me and cis-5-Me).

4,5-Dihydro-5-methyl-4-phenyl-2(3H)-furanone (4d): 0.480 g (2.50 mmol) of 1d afforded 0.286 g (65%) of 4d (trans: cis = 93:7). – B. p. 110–125°C/0.02 Torr. – IR (film): $\tilde{v} =$ 2970–2930 cm⁻¹ (C–H), 1780 (C=O). – ¹H NMR (CDCl₃): $\delta =$ 7.4–7.2 (m, 5H, Ph), 4.90 (m_c, 0.07H, cis-5-H), 4.55 (dq, J = 8.6, 6.2 Hz, 0.93H, trans-5-H), 3.25 (dt, J = 11.1, 8.6 Hz, 0.93H, trans-4-H), AB part of an ABX system ($\delta_{A} = 2.92$, $\delta_{B} = 2.78$, $J_{AB} =$ 17.5 Hz, $J_{AX} = 8.6$ Hz, $J_{BX} = 11.1$ Hz, 1.86H, trans-3-H), 1.41, 1.00 (2 d, J = 6.2 Hz, J = 6.7 Hz, 2.8H and 0.2H, trans-5-Me and cis-5-Me); signals for cis-4-H and cis-3-H are hidden by other signals.

Further Model Reactions

4-Hydroxy-5-methyl-1-heptene (8): 0.688 g (8.00 mmol) of freshly distilled 2-methylbutanal (7) was dissolved in 16 ml of dichloromethane and treated at -78 °C with 0.810 ml (8.00 mmol) of TiCl₄ and 1.400 g (12.00 mmol) of allyltrimethylsilane. After warm-up during a period of 16 h, the mixture was stirred for 1 h with 0.966 g (8.00 mmol) of Et₃N - HF⁴⁴. Addition of 30 ml of water, extraction with dichloromethane, and kugelrohr distillation (70 °C/7 Torr) provided 0.595 g (58%) of 8 (syn/anti = 62:38).

Similarly, 0.215 g (2.50 mmol) of 7 and 0.310 g (2.50 mmol) of Et₂O - BF₃ gave 0.157 g (49%) of **8** (*syn/anti* = 53:47). - IR (film): $\bar{\nu}$ = 3410 cm⁻¹ (OH), 3080, 2980 - 2870 (C - H), 1640 (C = C). - ¹H NMR (CDCl₃): δ = 5.83 (m_c, 1H, 2-H), 5.18 - 5.08 (m, 2H, 1-H), 3.55 (dt, *J* = 8.5, 4.2 Hz, 0.53 H, *syn*-4-H), 3.47 (ddd, *J* = 3.2, 5.7, 9.0 Hz, 0.47 H, *anti*-4-H), 2.36 - 1.93 (m, 3H, 3-H, OH), 1.51 (m_c, 2H, 6-H), 1.28 - 1.11 (m, 1H, 5-H), 0.98 - 0.86 (m, 6H, 7-H, 5-Me). - ¹³C NMR (CDCl₃): *syn* isomer: δ = 135.6 (d, C-2), 117.5 (t, C-1), 73.6* (d, C-4), 39.5 (d, C-5), 39.1 (t, C-3), 25.8 (t, C-6), 13.4, 11.7 (2 q, C-7, 5-CH₃); *anti* isomer: δ = 135.5 (d, C-2), 117.7 (t, C-1), 74.2* (d, C-4), 40.6 (d, C-5), 38.2 (t, C-3), 24.8 (t, C-6), 14.6, 11.5 (2 q, C-7, 5-CH₃): * signals very similar in intensity, assignment according to ref.^{38b)}.

5-Methyl-4-trimethylsiloxy-1-heptene (15): A mixture of 0.256 g (2.00 mmol) of 8, 3 ml of hexamethyldisilazane, and chlorotrimethylsilane (5 drops) was heated to 100 °C for 7 h. Distillation (70 °C/3 Torr) provided 0.301 g (75%) of 15 as a colorless liquid. For significant NMR data see Table 5, for the full data set see ref.¹.

General Procedure for Additions of Allyltrimethylsilane to Acetals: A solution of the acetal (1.0 equivalent) in dichloromethane (5 ml/ 1 mmol) was treated at -78 °C with TiCl₄ (1.5 equivalents) and allyltrimethylsilane (3.0 equivalents). After 1 h at this temperature methanol (0.5 ml/1 mmol acetal) was added and the resulting mixture warmed up over approx. 16 h. Addition of water and extraction with dichloromethane afforded the crude product which was purified by kugelrohr distillation.

Methyl 4-Methoxy-3-methyl-6-heptenoate (10a): Starting with 1.76 g (10.0 mmol) of 9a we obtained 0.876 g (51%) of 10a (b.p. 90°C/1 Torr, syn/anti = 60:40). – IR (film): $\tilde{v} = 3080$, 3040, 2980–2930 cm⁻¹ (C–H), 1735 (C=O), 1630 (C=C). – ¹H NMR (CDCl₃): $\delta = 5.82$ (m_c, 1H, 6-H), 5.16–5.00 (m, 2H, 7-H), 3.67, 3.66 (2 s, 3H, CO₂Me), 3.35, 3.34 (2 s, 3H, OMe), 3.13 (ddd, J = 3.5, 5.8, 7.1 Hz, 0.6H, syn-4-H), 3.02 (dt, J = 5.0, 6.2 Hz, 0.4 H, anti-4-H), 2.54–2.44, 2.36–2.10 (2 m, 5H, 2-H, 3-H, 5-H), 0.94 (d, J =6 Hz, 1.2H, anti-CH₃), 0.93 (d, J = 6.8 Hz, 1.8 H, syn-CH₃). – ¹³C NMR (CDCl₃): syn isomer: $\delta = 173.6$, 51.7 (s, q, CO₂Me), 135.2 (d, C-6), 116.6 (t, C-7), 83.4 (d, C-4), 57.8 (q, OMe), 37.2, 34.8 (2 t, C-2, C-5), 32.5 (d, C-3), 14.3 (q, CH₃): anti isomer: $\delta = 134.5$ (d, C-6), 116.8 (t, C-7), 84.1 (d, C-4), 57.4 (q, OMe), 51.8 (q, CO₂Me), 37.4.

Chem. Ber. 122 (1989) 2165-2175

34.5 (2 t, C-2, C-5), 33.2 (d, C-3), 16.9 (q, CH_3); the signal of C-1 could not be identified.

Synthesis of 4-methoxy-3-methyl-1-trimethylsiloxy-6-heptene (14) from 10a by reduction with LiAlH₄ (in diethyl ether) and subsequent silylation (as for 15) is described in full detail in ref.¹). For significant NMR values see Table 5.

Methyl 4-Methoxy-3-phenyl-6-heptenoate (10b): Starting with 1.90 g (8.00 mmol) of acetal 9b we obtained 1.97 g (99%) of 10b (b. p. 110 °C/0.02 Torr, syn/anti = 40:60). – IR (film): $\tilde{v} = 3080$, $3040, 2980 - 2930 \text{ cm}^{-1} (C - H), 1735 (C = O), 1630 (C = C). - {}^{1}H$ NMR (C₆D₆): $\delta = 7.32 - 7.06$ (m, 5H, Ph), 5.76 (m_c, 1H, 6-H), 5.13-5.02 (m, 2H, 7-H), 3.47 (m_c, 1H, 4-H), 3.33-3.17 (m, 2 s at $\delta = 3.27, 3.24, 4H, 3-H, CO_2Me$, 3.14 (s, 1.2H, syn-OMe), 3.12 (s, 1.8H, anti-OMe), 2.96 (dd, J = 5.4, 15.5 Hz, 0.6H, anti-2-H), 2.83 (dd, J = 6.7, 15.7 Hz, 0.4 H, syn-2-H), 2.70 (dd, J = 8.4, 15.7 Hz,0.4 H, syn-2'-H), 2.59 (dd, J = 9.1, 15.5 Hz, 0.6 H, anti-2'-H), 2.20-2.08, 2.01-1.87 (2 m, 2 H, 5-H). - ¹³C NMR (C₆D₆): anti isomer: $\delta = 172.4$, 50.9 (s, q, CO₂Me), 142.3, 129.3, 128.0, 126.9 (s, 3 d, Ph), 134.5 (d, C-6), 117.3 (t, C-7), 84.0 (d, C-4), 57.4 (q, OMe), 46.3 (d, C-3), 37.7, 35.4 (2 t, C-2, C-5); syn isomer: $\delta = 140.8$ (s, iPh), 135.5 (d, C-6), 117.0 (t, C-7), 83.8 (d, C-4), 57.9 (q, OMe), 51.1 (q, CO₂Me), 45.1 (d, C-3), 36.6, 35.8 (2 t, C-2, C-5); signals for C-1 and o-, m-, p-Ph, respectively, coincide for both isomers.

1-Benzyloxy-4-methoxy-3-methyl-6-heptene (**12a**): Starting with 0.476 g (2.00 mmol) of **11a** we obtained 0.465 g (94%) of **12a** (b. p. 110°C/0.02 Torr, *syn/anti* = 60:40). – IR (film): $\tilde{v} = 3080$, 3040, 2940–2850 cm⁻¹ (C–H). – ¹H NMR (C₆D₆): $\delta = 7.31-7.08$ (m, 5H, Ph), 5.86 (m_c, 1H, 6-H), 5.10–5.00 (m, 2H, 7-H), 4.34 (s, 2H, CH₂Ph), 3.39 (m_c, 2H, 1-H), 3.15 (s, 1.8H, *syn*-OMe), 3.14 (s, 1.2H, *anti*-OMe), 2.98 (td, J = 6.5, 3.5 Hz, 0.6H, *syn*-4-H), 2.91 (dt, J = 6.6, 5.0 Hz, 0.4H, *anti*-4-H), 2.30–2.09 (m, 2H, 5-H), 1.89 (m_c, 2H, 2-H), 1.45 (m_c, 1H, 3-H), 0.90, 0.88 (2 d, J = 7 Hz, 3H, CH₃). – ¹³C NMR (C₆D₆): *syn* isomer: $\delta = 139.5$, 128.4, 127.6, 127.5 (s, 3 d, Ph), 136.2 (d, C-6), 116.3 (t, C-7), 84.5 (d, C-4), 72.9 (t, CH₂Ph), 68.7 (t, C-1), 57.4 (q, OMe), 35.5, 33.2 (2 t, C-2, C-5), 32.8 (d, C-3), 14.5 (q, CH₃); *anti* isomer: $\delta = 85.1$ (d, C-4), 68.9 (t, C-1), 57.2 (q, OMe), 34.9, 32.5 (2 t, C-2, C-5), 15.4 (q, CH₃); signals for PhCH₂-, C-3, C-6, and C-7, respectively, coincide for both isomers.

t-(*tert-Butyldimethylsiloxy*)-4-methoxy-3-methyl-6-heptene (12b): Starting with 0.525 g (2.00 mmol) of 11b we obtained after distillation 0.388 g of a mixture of 12b and the corresponding desilylated material. Silylation with ClSiMe₂tBu/imidazole⁴⁵⁾ and redistillation (85 °C/0.1 Torr) provided 0.405 g (74%) of 12b (*syn/ anti* = 50:50). For significant NMR data see Table 5; the full data set is compiled in ref.¹⁾.

Synthesis of 3-methyl-1,4-bis(trimethylsiloxy)-6-heptene (13) from 3a by reduction with LiAlH₄ (in dicthyl ether) and subsequent silylation (as for 15) is described in full detail in ref.¹⁾. For significant NMR values see Table 5.

Preparation of 1 – Lewis Acid Complexes for Spectroscopic Investigations

A solution of 0.50 mmol of 1 in 0.7 ml of CD_2Cl_2 was treated at -78 °C with the corresponding Lewis acid (1 or 2 equivalents). The suspension or solution was warmed to room temp. and transferred to an NMR tube under a stream of nitrogen. The NMR spectra were recorded at ambient temperature. For significant signals see Table 3; for the full data set see ref.¹; the NMR parameters for complexes of 1a were also reported in ref.¹⁰. Similarly, a solution of 1a · TiCl₄ in CDCl₃ was transferred to a CaF₂ cuvette to record the IR spectrum.

1a: 65038-34-8 / 1b: 40630-07-7 / 1c: 71464-85-2 / 1d: 51212-29-4 / **1e**: 13865-21-9 / **1f**: 67031-12-3 / **1g**: 77903-62-9 / **1h**: 121756-45-4 / trans-**3a**: 112423-33-3 / cis-**3a**: 112423-36-6 / trans-**3b**: 121756-24-9 / cis-3b: 121756-25-0 / trans-3c: 112423-34-4 / cis-3c: 112423-37-7 / trans-3d: 112423-35-5 / cis-3d: 112423-38-8 / trans-3e: 121756-26-1 / cis-3e: 121756-27-2 / trans-3f: 121756-28-3 / cis-121756-38-5 / anti-10b: 121756-39-6 / 11a: 121756-47-6 / 11b: 121756-48-7 / syn-12a: 121756-40-9 / anti-12a: 121756-41-0 / syn-12b: 121756-42-1 / anti-12b: 121756-43-2 / syn-13: 121756-44-3 / anti-13: 121756-51-2 / syn-14: 121756-37-4 / anti-14: 121756-50-1 / syn-15: 121756-34-1 / anti-15: 121756-49-8 / ClSiMe₂tBu: 18162-48-6 / BF₃: 7637-07-2 / TiCl₄: 7550-45-0 / ZrCl₄: 10026-11-6 / AlCl₃: 7446-70-0 / HfCl₄: 13499-05-3 / SnCl₄: 7646-78-8 / allyltrimethylsilane: 762-72-1 / imidazole: 288-32-4

- ¹⁾ T. Kunz, *Dissertation*, Technische Hochschule Darmstadt 1989. ²⁾ A. Janowitz, Diplomarbeit, Technische Hochschule Darmstadt 1988.
- ³⁾ M. Larcheveque, G. Tamagnan, Y. Petit, J. Chem. Soc., Chem. Commun. 1989, 31 and ref. cited therein.
- ⁴⁾ C. Günther, A. Mosandl, Liebigs Ann. Chem. 1986, 2112.
 ⁵⁾ N. C. Franca, O. R. Gottlieb, D. T. Coxon, Phytochemistry 16 (1977) 257.
- ⁶⁾ S. Hanessian, Aldrichimica Acta 22 (1989) 3, and ref. cited therein.
- ⁷⁾ G. Stork, S. D. Rychnowsky, Pure Appl. Chem. 58 (1986) 767.
 ⁸⁾ F. E. Ziegler, A. Kneisley, J. K. Thottahil, R. T. Wester, J. Am. Chem. Soc. 110 (1988) 5434 and ref. cited therein.
- Chem. Soc. 110 (1988) 5434 and ref. cited therein.
 ⁹⁾ For selected recent work on this topic see: ^{9a)} G. Stork, P. M. Sher, J. Am. Chem. Soc. 105 (1983) 6765. ^{9b)} D. Hoppe, A. Brönnecke, Tetrahedron Lett. 24 (1983) 1687. ^{9c)} G. A. Kraus, K. Landgrebe, Tetrahedron Lett. 25 (1984) 3939. ^{9d)} H. Frauenrath, T. Philipps, Liebigs Ann. Chem. 1985, 1951. ^{9c)} Y. Ueno, O. Moriya, K. Chino, M. Watanabe, M. Okawara, J. Chem. Soc., Perkin Trans. 1, 1986, 1351. ⁹⁰ J.-M. Fang, B.-C. Hong, L.-F. Liao, J. Org. Chem. 52 (1987) 855. ^{9g)} T. H. Black, J. A. Hall, R. G. Shen, J. Org. Chem. 53 (1988) 2371. ^{9h} S. Fukuzawa, A. Nakanishi, T. Fujinami, S. Sakai, J. Chem. Soc., Perkuzawa, A. Nakanishi, T. Fujinami, S. Sakai, J. Chem. Soc., Per-kin Trans. 1, **1988**, 1669. – ^{9j} R. J. Linderman, J. R. McKenzie, Tetrahedron Lett. **29** (1988) 3911. – ^{9k} S. G. Davies, D. M. Middlemiss, A. Naylor, M. Wills, Tetrahedron Lett. **30** (1989) 587. – ^{9j} T.-J. Sturm, A. E. Marolewski, D. S. Rezenka, S. K. Taylor, J. Org. Chem. 54 (1989) 2039.
- ¹⁰⁾ For a preliminary communication see: T. Kunz, H. U. Reißig Angew. Chem. 100 (1988) 297; Angew. Chem. Int. Ed. Engl. 27 (1988) 268
- ¹¹⁾ Review: M. T. Reetz, Angew. Chem. 96 (1984) 542; Angew. Chem. Int. Ed. Engl. 23 (1984) 556; Organotitanium Reagents in Organic
- ¹²⁾ ^{12a} G. Maier, M. Schneider, T. Sayrac, *Chem. Ber.* 111 (1978) 3412. ^{12b)} T. Fukuyama, B. Vranesic, D. P. Negri, Y. Kishi, *Tetrahedron Lett.* 1978, 2741. ^{12c)} M. T. Reetz, R. Steinbach, J. Westermann, R. Urz, B. Wenderoth, R. Peter, *Angew. Chem.* 94 (1982) 133: *Angew. Chem. Lett. Ed. Expl.* 21 (1982) 135; *Angew.* 94 (1982) 133; Angew. Chem. Int. Ed. Engl. 21 (1982) 135; Angew. Chem. Suppl. 1982, 257. – ^{12d)} M. T. Reetz, K. Kesseler, S. Chem. Suppl. 1962, 227. — 10. 1. RCC2, R. RCSSICI, S. Schmidtberger, B. Wenderoth, R. Steinbach, *ibid.* 95 (1983) 1007 and 22 (1983) 989 and 1983, 1511. — 12e G. Maier, C. Roth, R. K. Schmitt, *Chem. Ber.* 118 (1985) 704. — 120 I. Fleming, H. Kühne, K. Takai, J. Chem. Soc., Perkin Trans. 1, 1986, 725. — 120 Block J. Cilbert Transholm and 29 (1987) 427 (29). ^{12g)} R. Bloch, L. Gilbert, Tetrahedron Lett. 28 (1987) 423.
- ¹³⁾ ^{13a)} For Lewis acid complexation directing additions to 1,3-dicarbonyl compounds see: T. Oishi, T. Nakata, Acc. Chem. Res. 17 (1984) 338; G. A. Molander, S. W. Andrews, Tetrahedron Lett. 27 (1986) 3115. – ^{13b)} R. Frenette, M. Kakushima, R. Zamboni, R. N. Young, T. R. Verhoeven, J. Org. Chem. 52 (1987) 304. – ¹³⁶ Crystal structure analysis of a seven-membered ring chelate: T. Poll, J. O. Metter, G. Helmchen, Angew. Chem. 97 (1985) 117; Angew. Chem. Int. Ed. Engl. 24 (1985) 116. – ^{13d)} D. Mobilio, B. DeLange, Tetrahedron Lett. 28 (1987) 1483. - 13ei N-BOC-pro-

tected α -aminoaldehydes can also form seven-membered chelates with Lewis acidic reagents: P. Garner, S. Ramakanth, J. Org. Chem. 51 (1986) 2609. – H.-E. Radunz, R. M. Devant, V. Eier-mann, Liebigs Ann. Chem. 1988, 1103. – For complexation in 1-acrylolylproline esters see: H. Waldmann, J. Org. Chem. 53

- (1988) 6133; F. Effenberger, H. Isak, *Chem. Ber.* **122** (1989) 545.
 ¹⁴⁾ T. Kunz, A. Janowitz, H.-U. Reißig, *Synthesis* **1989**, in the press.
 ¹⁵⁾ H. Sakurai, *Pure Appl. Chem.* **54** (1982) 203.
 ¹⁶⁾ M. T. Reetz, S. H. Kyung, M. Hüllmann, *Tetrahedron* **42** (1986) 2021. 2931.
- ²⁵³¹.
 ¹⁷⁾ D. Schinzer, Synthesis 1988, 263 and ref. cited therein.
 ¹⁸⁾ ^{18a} M. Cherest, H. Felkin, N. Prudent, Tetrahedron Lett. 1968, 2199; N. T. Anh, Top. Curr. Chem. 88 (1980) 145. ^{18b} A recent theoretical study supporting the Felkin-Anh model: Y.-D. Wu, K. N. Houk, J. Am. Chem. Soc. 109 (1987) 908. – ^{18c)} Recent experimental work: E. P. Lodge, C. H. Heathcock, *ibid.* 109 (1987) 3353.
- ¹⁹⁾ D. J. Cram, F. A. Abd Elhafez, J. Am. Chem. Soc. 74 (1952) 5828.
- ²⁰⁾ For the syn/anti nomenclature applied in this paper see: S. Masamune, T. Kaiho, D. S. Garvey, J. Am. Chem. Soc. 104 (1982) 5521
- ²¹⁾ C. H. Heathcock, S. Kiyooka, T. A. Blumenkopf, J. Org. Chem. 49 (1984) 4214.
- ²²⁾ I. Mori, P. A. Bartlett, C. H. Heathcock, J. Am. Chem. Soc. 109 (1987) 7199.
- ²³⁾ For E_s values see: T. Fujita, T. Nishioka, Progr. Phys. Org. Chem. 12 (1976) 49. For empirical substituent parameters see: R. Knorr, Chem. Ber. 113 (1980) 2441.
- ²⁴⁾ T. Kunz, H.-U. Reißig, *Liebigs Ann. Chem.* **1989**, 891. ²⁵⁾ The σ^* orbital of the C2–C3 bond should be energetically lower than that of the C3 - R bond, because it is flanked by two strongly electron-withdrawing activated carbonyl functions. A nucleophile's attack orthogonaly to the C2-C3 bond – as is indicated in \mathbf{E} - should benefit by delocalization of electron density into this σ^* orbital. However, the importance of this effect cannot be evaluated. 261
- A very recent paper states that additions of Lewis acidic nuc-leophiles [MeMgBr, MeTi(OiPr),] to an aldehyde related to 1a but bearing a CH₂OCH₂Ph group instead of the ester function occur with moderate syn preference! [K. Tomooka, T. Okinaga, K. Suzuki, G. Tsuchihashi, Tetrahedron Lett. 30 (1989) 1563.] Although these investigations are not directly comparable to those with allylsilane/TiCl₄ or MeTiCl₃, the results suggest a weaker or completely missing coordination of the benzyloxy
- group to the metal. ²⁷⁾ F. A. Cotton, G. Wilkinson, Anorganische Chemie, 3. ed., Verlag Chemie, Weinheim 1980.
- ²⁸⁾ M. T. Reetz, M. Hüllmann, T. Seitz, Angew. Chem. 99 (1987) 478; Angew. Chem. Int. Ed. Engl. 26 (1987) 477.
- ²⁹⁾ Five- and six-membered chelates have unequivocally been established by spectroscopic means. See ref.²⁸⁾ G. E. Keck, S. Castellino, M. R. Wiley, J. Org. Chem. **51** (1986) 5478; S. V. Frye, E. L. Eliel, R. Cloux, J. Am. Chem. Soc. **109** (1987) 1862; S. E. Denmark, E. J. Weber, T. M. Wilson, T. M. Willson, Tetrahedron **45** (1989) 1053. For an X-ray analysis of a 1,3-diketone – TiCl₄ complex see: G. Maier, U. Seipp, R. Boese, Tetrahedron Lett. 28 (1987) 4515.
- 30) Treatment of 3f (trans/cis = 25:75) with triethylamine (15 equivalents) in tert-butyl methyl ether for 3 d at room temp. provided 3f with a trans/cis ratio of 37:63. Similarly, for 3g (trans/cis = 90:10) the equilibrium ratio was established to be *trans/cis* = 40:60. For employment of this method see ref.³⁷; see also: P. K. Chakravarty, S. E. de Laszlo, C. S. Sarnella, J. P. Springer, P. F. Schuda, Tetrahedron Lett. 30 (1989) 415
- ³¹⁾ For a report on this topic: A. Janowitz, T. Kunz, G. Handke, H.-U. Reißig, Synlett 1989, 24.
- ³²⁾ For chelate formation of β -chiral aldehydes and their Sakurai reaction see: M. T. Reetz, K. Kesseler, A. Jung, *Tetrahedron Lett.* 25 (1984) 729 and ref.²¹⁾
- 33) A. Hosomi, M. Endo, H. Sakurai, Chem. Lett. 1976, 941 and ref.15)
- ³⁴⁾ R. D. Walkup, N. U. Obeyesekere, Synthesis 1987, 607.
- ³⁵⁾ However, chelation control seems possible if a mechanistic alternative involving an S_N 2-type transition state is assumed. See:
- C. P. Holmes, P. A. Bartlett, J. Org. Chem. 54 (1989) 98. S.
 E. Denmark, T. M. Willson, J. Am. Chem. Soc. 111 (1989) 3475.
 ³⁶) See ref.^{9,13b} and: S. A. M. T. Hussein, W. D. Ollis, C. Smith, J.
- F. Stoddart, J. Chem. Soc., Perkin Trans. 1, 1975, 1480. ³⁷⁾ C. Jaime, R. M. Ortuno, J. Font, J. Org. Chem. 51 (1986) 3946.
 - Chem. Ber. 122 (1989) 2165-2175

- ³⁸⁾ ^{38a)} R. W. Hoffmann, U. Weidmann, Chem. Ber. **118** (1985) 3966. – ^{38b)} H. C. Brown, K. S. Bhat, R. S. Randad, J. Org. Chem. **54** (1989) 1570.
- ⁵⁴ (1969) 1570.
 ³⁹⁾ For preparation of optically active β-formylcarboxylate derivatives see: M. Asami, T. Mukaiyama, Chem. Lett. 1979, 569. –
 A. Bernardi, S. Cardani, T. Pilati, G. Poli, C. Scolastico, R. Villa, J. Org. Chem. 53 (1988) 1600. H. Kipphardt, Dissertation, Technische Hochschule Aachen 1986, and D. Enders, personal communication.
- ⁴⁰⁾ An experiment performed with enantiomerically enriched aldehyde **1a** (ee 26%) provided γ -lactone **3a** with essentially unchanged optical purity (*trans*-**3a**; ee 24%; *cis*-**3a**: ee 22%)ⁿ.
- ⁴¹⁾ TiCl₄ promoted additions of silyl enol ethers to 1a afford γlactones with very high *trans* selectivity. See ref.¹⁾ and N. Basso, *Diplomarbeit*, Technische Hochschule Darmstadt 1989.
- ⁴²⁾ E. Kunkel, I. Reichelt, H.-U. Reißig, Liebigs Ann. Chem. 1984, 802.
- ⁴³⁾ See ref.⁹⁰ and C. Nájera, M. Yus, D. Seebach, *Helv. Chim. Acta* 67 (1984) 289.
- ⁴⁴⁾ S. Hünig, G. Wehner, Synthesis 1975, 180.
- ⁴⁵⁾ E. J. Corey, A. Venkateswarlu, J. Am. Chem. Soc. **94** (1972) 6190. [143/89]